
Los sentidos del gusto y el olfato nos permiten distinguir los alimentos indeseables o incluso mortales de aquellos otros que resultan agradables de comer y nutritivos. Además, desencadenan respuestas fisiológicas que intervienen en la digestión y en la utilización de los alimentos. El sentido del olfato también permite que los animales reconozcan la proximidad de otros animales o hasta de cada individuo entre sus congéneres. Por último, ambos sentidos se encuentran íntimamente ligados a funciones emocionales y conductuales primitivas de nuestro sistema nervioso. En este capítulo, hablaremos de cómo se detectan los estímulos del gusto y el olfato y del modo en que se codifican en señales nerviosas transmitidas al encéfalo.

Sentido del gusto
El gusto constituye sobre todo una función de las yemas gustativas de la boca, pero es una experiencia frecuente que el sentido del olfato también contribuya poderosamente a su percepción. Además, la textura de los alimentos, detectada por la sensibilidad táctil de la boca, y la presencia de sustancias que estimulen las terminaciones para el dolor, como la pimienta, modifica enormemente la experiencia gustativa. La importancia del gusto radica en el hecho de que permite a una persona escoger la comida en función de sus deseos y a menudo según las necesidades metabólicas de los tejidos corporales para cada sustancia específica.
Sensaciones gustativas primarias
No se conoce la identidad de todas las sustancias químicas específicas que excitan los diversos receptores gustativos. Los estudios psicofisiológicos y neurofisiológicos han identificado un mínimo de 13 receptores químicos probables en las células gustativas, de los siguientes tipos: 2 receptores para el sodio, 2 para el potasio, 1 para el cloruro, 1 para la adenosina, 1 para la inosina, 2 para el sabor dulce, 2 para el sabor amargo, 1 para el glutamato y 1 para el ion hidrógeno. Con el fin de realizar un análisis práctico del gusto, las capacidades señaladas de los receptores también se han reunido en cinco categorías generales llamadas sensaciones gustativas primarias. Estas son agrio, salado, dulce, amargo y «umami».
Sabor agrio
El sabor agrio está causado por los ácidos, es decir, por la concentración del ion hidrógeno, y la intensidad de esta sensación gustativa es aproximadamente proporcional al logaritmo de esta concentración del ion hidrógeno (es decir, cuanto más ácido sea un alimento, más potente se vuelve dicha sensación).
Sabor salado
El sabor salado se despierta por las sales ionizadas, especialmente por la concentración del ion sodio. La cualidad de este rasgo varía de una sal a otra, porque algunas de ellas suscitan otras sensaciones gustativas además del sabor salado. Los cationes de las sales, sobre todo los cationes sodio, son los principales responsables del gusto salado, pero los aniones también contribuyen en menor medida.
Sabor dulce
El sabor dulce no está ocasionado por una sola clase de sustancias químicas. Entre los tipos de productos que lo originan figuran los azúcares, glicoles, alcoholes, aldehídos, cuerpos cetónicos, amidas, ésteres, ciertos aminoácidos, algunas proteínas pequeñas, los ácidos sulfónicos, los ácidos halogenados y las sales inorgánicas de plomo y berilio. Obsérvese en concreto que la mayoría de las sustancias que generan el sabor dulce son compuestos orgánicos. Resulta especialmente interesante que unas ligeras modificaciones en la estructura química, como la incorporación de un simple radical, muchas veces pueden cambiar el producto de dulce a amargo.
Sabor amargo
El sabor amargo, igual que el sabor dulce, no está originado por un único tipo de agente químico. En este caso, una vez más las sustancias que lo suministran son casi todas orgánicas. Dos clases particulares tienen una especial probabilidad de causar sensaciones de sabor amargo: 1) las sustancias orgánicas de cadena larga que contienen nitrógeno, y 2) los alcaloides. Estos últimos comprenden muchos de los fármacos empleados en medicamentos como la quinina, la cafeína, la estricnina y la nicotina. Algunas sustancias que al principio saben saladas dejan un regusto amargo. Esta característica sucede con la sacarina, lo que le otorga un carácter desagradable para algunas personas. El sabor amargo, cuando se da con una gran intensidad, suele hacer que la persona o el animal rechace la comida. Esta reacción es una función indudablemente importante de dicha sensación gustativa, pues muchas toxinas mortales presentes en las plantas venenosas son alcaloides, y prácticamente todos estos alcaloides suscitan un sabor amargo intenso, normalmente seguido por el rechazo del alimento.
Sabor umami
Umami, una palabra japonesa que significa «delicioso», designa una sensación gustativa agradable que resulta diferente desde el punto de vista cualitativo de los sabores agrio, salado, dulce o amargo.Umami es el sabor dominante de los alimentos que contienen l-glutamato, como los extractos cárnicos y el queso curado, y algunos fisiólogos lo consideran una quinta categoría independiente de estímulos gustativos primarios. Un receptor gustativo para el l-glutamato puede estar relacionado con uno de los receptores glutamatérgicos expresado también en las sinapsis neuronales del cerebro. Sin embargo, aún no están claros los mecanismos moleculares exactos responsables del sabor umami.

Umbral gustativo
El umbral de estimulación para el sabor agrio debido al ácido clorhídrico oscila alrededor de 0,0009 M; en el caso del sabor salado por el cloruro sódico es de 0,01 M; para el sabor dulce por la sacarosa es de 0,01 M, y para el sabor amargo por la quinina, de 0,000008 M. Obsérvese sobre todo la mayor sensibilidad para las sensaciones gustativas amargas que para todas las demás, lo que ya resultaba previsible, pues esta sensación cumple una función protectora importante contra muchas toxinas peligrosas de los alimentos.
Ceguera gustativa
Algunas personas están ciegas para el gusto de ciertas sustancias, sobre todo los diversos tipos de compuestos de la tiourea. Un producto empleado a menudo por parte de los psicólogos para poner de manifiesto la ceguera gustativa es la feniltiocarbamida, para la que de un 15 a un 30% de las personas muestran una ceguera gustativa; el porcentaje exacto depende del método de exploración y de la concentración de la sustancia.
Yemas gustativas y su función
Entretejida alrededor de los cuerpos de las células gustativas hay toda una red terminal ramificada de fibras nerviosas gustativas que reciben el estímulo de las células receptoras del gusto. Algunas se invaginan en pliegues de la membrana de la célula gustativa. Debajo de la membrana celular se forman muchas vesículas cerca de las fibras. Se cree que estas vesículas contienen una sustancia neurotransmisora que se libera a través de la membrana celular para excitar las terminaciones de las fibras nerviosas como respuesta a la estimulación gustativa.

Las yemas gustativas se encuentran en los tres tipos siguientes de papilas linguales: 1) una gran cantidad está en las paredes de las depresiones que rodean a las papilas caliciformes, que forman una línea en «V» sobre la superficie de la parte posterior de la lengua; 2) un número moderado queda sobre las papilas fungiformes en la cara anterior plana de la lengua, y 3) una proporción también moderada se encuentra sobre las papilas foliáceas situadas en los pliegues a lo largo de las superficies laterales de la lengua. Existen otras yemas gustativas más en el paladar, y unas pocas en los pilares amigdalinos, en la epiglotis e incluso en la parte proximal del esófago. Los adultos poseen de 3.000 a 10.000 yemas gustativas y los niños tienen unas pocas más. Pasados los 45 años, muchas yemas degeneran, lo que deriva en que la sensibilidad del gusto disminuya en el anciano
La membrana de la célula gustativa, igual que la mayoría de las demás células receptoras sensitivas, tiene una carga negativa en su interior con respecto al exterior. La aplicación de una sustancia con sabor sobre los cilios gustativos provoca una pérdida parcial de este potencial negativo, es decir, la célula gustativa se despolariza. En la mayoría de los casos, el descenso del potencial, dentro de un rango amplio, es aproximadamente proporcional al logaritmo de la concentración de la sustancia estimulante. Este cambio del potencial eléctrico en la célula gustativa se llama potencial de receptor para el gusto.
Tras la primera aplicación del estímulo gustativo, la frecuencia de descarga de las fibras nerviosas procedentes de las yemas gustativas asciende hasta un máximo en una pequeña fracción de segundo, pero a continuación se adapta durante los segundos siguientes hasta regresar a un nivel estable más bajo mientras permanezca presente el estímulo gustativo. Por tanto, el nervio gustativo transmite una señal potente inmediata, y una señal continua más débil todo el tiempo que la yema gustativa siga expuesta al estímulo correspondiente.
Transmisión de las señales gustativas en el sistema nervioso central.
Los impulsos gustativos procedentes de los dos tercios anteriores de la lengua se dirigen primero hacia el nervio lingual, a continuación van por la cuerda del tímpano hacia el nervio facial, y finalmente llegan al tracto solitario en el tronco del encéfalo. Las sensaciones gustativas de las papilas caliciformes situadas en el dorso de la lengua y en otras regiones posteriores de la boca y de la garganta se transmiten a través del nervio glosofaríngeo también hacia el tracto solitario, pero a un nivel un poco más inferior. Finalmente, unas cuantas señales gustativas se conducen hacia el tracto solitario desde la base de la lengua y otras porciones de la región faríngea por medio del nervio vago.

Integración de los reflejos gustativos en el tronco del encéfalo Desde el tracto solitario, muchas señales gustativas se transmiten directamente por el propio tronco del encéfalo hacia los núcleos salivales superior e inferior, y estas zonas envían señales hacia las glándulas submandibular, sublingual y parótida que sirven para controlar la secreción de saliva durante la ingestión y la digestión de la comida.
Rápida adaptación del gusto
Todo el mundo está acostumbrado al hecho de que las sensaciones gustativas se adaptan con rapidez; muchas veces lo hacen prácticamente por completo en un plazo de 1 min más o menos tras su estimulación continua. Con todo, según los estudios electrofisiológicos realizados con las fibras nerviosas gustativas, está claro que la adaptación de las propias yemas gustativas normalmente no explica más que la mitad de esta rápida adaptación del gusto. Por tanto, el grado final de adaptación tan extremo que sucede en el sentido del gusto ocurre casi con seguridad en el sistema nervioso central, aunque no se conozcan cuáles son sus mecanismos. En cualquier caso, se trata de un fenómeno diferente del que se da en la mayoría de los demás sistemas sensitivos, cuya adaptación se produce principalmente a nivel de los receptores.
Preferencias gustativas y control del régimen alimentario
Las preferencias gustativas no significan nada más que un animal elegirá ciertos tipos de comida por encima de otros, y que recurre automáticamente a este mecanismo como medio para controlar el tipo de alimentación que consume. Además, sus preferencias gustativas cambian a menudo en función de las necesidades corporales de ciertas sustancias específicas. Los siguientes experimentos ponen de manifiesto esta capacidad de los animales para escoger la comida según las necesidades de sus organismos. En primer lugar, después de una suprarrenalectomía los animales hiponatrémicos se decantan automáticamente por beber agua con una concentración elevada de cloruro sódico por encima del agua pura, y muchas veces la cantidad de cloruro de sodio en el agua basta para cubrir las necesidades corporales y evitar la muerte por pérdida de sodio. En segundo lugar, un animal que reciba inyecciones con una cantidad excesiva de insulina sufre una pérdida de azúcar en la sangre y selecciona mecánicamente la más dulce de las comidas entre muchas opciones. En tercer lugar, los animales paratiroidectomizados con pérdida de calcio se inclinan instintivamente por beber agua con una concentración elevada de cloruro cálcico. Estos mismos fenómenos también se observan en la vida cotidiana.
SENTIDO DEL OLFATO.
El olfato es el menos conocido de nuestros sentidos, debido en parte al hecho de que constituye un fenómeno subjetivo que no puede estudiarse con facilidad en los animales inferiores. Otro problema que complica la situación es que el sentido del olfato está poco desarrollado en los seres humanos en comparación con lo que sucede en muchos animales inferiores.
Membrana olfatoria
La membrana olfatoria, En sentido medial, se dobla hacia abajo a lo largo de la superficie del tabique en su parte superior; en sentido lateral se pliega sobre el cornete superior e incluso sobre una pequeña porción de la cara superior del cornete medio.
El compuesto oloroso se une a la porción de la proteína receptora que se vuelve hacia el exterior. Sin embargo, la parte interna de la proteína plegada está acoplada a la proteína G, que es en sí una combinación de tres subunidades. Al excitarse la proteína receptora se desprende una subunidad α de la proteína G y activa la adenilato ciclasa, que está fija al interior de la membrana ciliar cerca del cuerpo de la célula receptora. A su vez, la ciclasa activada convierte muchas moléculas de trifosfato de adenosina intracelular en monofosfato de adenosina cíclico (AMPc). Finalmente, este AMPc activa otra proteína cercana de la membrana, un canal activado para el ion sodio, que abre su «compuerta» y permite el vertido de una gran cantidad de iones sodio a través de la membrana hacia el citoplasma de la célula receptora. Los iones sodio elevan el potencial eléctrico dentro de la membrana celular en sentido positivo, lo que excita a la neurona olfatoria y transmite potenciales de acción hacia el sistema nervioso central por medio del nervio olfatorio.

ormemente el efecto excitador hasta del más débil de los compuestos olorosos. En resumen: 1) la activación de la proteína receptora por la sustancia olorosa estimula el complejo de la proteína G; 2) esto a su vez activa múltiples moléculas de adenilato ciclasa por dentro de la membrana de la célula
olfatoria; 3) esto provoca la formación de un número muchas veces mayor de moléculas de AMPc, y, finalmente, 4) el AMPc abre una cantidad todavía muy superior de canales iónicos de sodio. Por tanto, incluso la concentración más minúscula de un producto oloroso específico pone en marcha un efecto en cascada que abre una proporción elevadísima de canales de sodio. Este proceso explica la exquisita sensibilidad de las neuronas olfatorias incluso frente a la cantidad más leve de sustancia olorosa. Además del mecanismo químico básico por el que se activan las células olfatorias, diversos factores físicos influyen sobre su grado de estimulación. En primer lugar, solo es posible oler las sustancias volátiles que pueden inhalarse por las narinas. En segundo lugar, la sustancia estimulante ha de tener al menos un carácter un poco hidrosoluble para que sea capaz de atravesar el moco y llegar a los cilios olfatorios. En tercer lugar, es útil que además sea como mínimo un tanto liposoluble, se supone que debido a que los componentes lipídicos del cilio constituyen una débil barrera para los productos que no sean liposolubles.

Potenciales de membrana y potenciales de acción en las células olfatorias
El potencial de membrana en el interior de las células olfatorias sin estimular, según se recoge mediante microelectrodos, oscila alrededor de –55 mV. A este nivel, la mayor parte de las células generan potenciales de acción continuos a una frecuencia muy baja, que varía desde una vez cada 20s hasta dos a tres por segundo. La mayoría de las sustancias olorosas producen una despolarización de la membrana en la célula olfatoria, lo que disminuye el potencial negativo de la célula desde su valor normal de –55 mV hasta – 30 o menos aún: es decir, cambia el voltaje en un sentido positivo. Junto a esto, el número de potenciales de acción crece de 20 a 30 por segundo, lo que representa una frecuencia alta para las diminutas fibras nerviosas olfatorias. Dentro de un amplio intervalo, la frecuencia de impulsos del nervio olfatorio cambia aproximadamente en proporción al logaritmo de la intensidad del estímulo, lo que manifiesta que los receptores olfatorios obedecen a unos principios de transducción similares a los que siguen otros receptores sensitivos.
Rápida adaptación de las sensaciones olfatorias.
Los receptores olfatorios se adaptan alrededor del 50% más o menos durante el primer segundo después de su estimulación. A partir de ahí, el proceso ya sigue muy poco más y con una gran lentitud. En cambio, todos sabemos por nuestra propia experiencia que las sensaciones olfatorias se adaptan casi hasta su extinción en un plazo en torno a 1 min después de entrar en una atmósfera cargada con un olor muy penetrante. Como esta adaptación psicológica resulta mucho mayor que el grado de adaptación de los receptores, es casi seguro que la mayor parte del proceso suplementario sucede dentro del sistema nervioso central, lo que también parece ser así en el caso de la adaptación a las sensaciones gustativas.
Indagación de las sensaciones olfatorias primarias
En el pasado, la mayoría de los fisiólogos estaban convencidos de que muchas de las sensaciones olfatorias se encuentran a cargo de unas cuantas sensaciones primarias bastante independientes, de forma parecida a lo que sucede con la visión y el gusto, que derivan de unas pocas sensaciones primarias determinadas. A raíz de los estudios psicológicos, un intento de clasificar estas sensaciones es el siguiente:
1. Alcanforado.
2. Almizcleño.
3. Floral.
4. Mentolado.
5. Etéreo.
6. Acre.
7. Pútrido.
Naturaleza afectiva del olfato
El olfato, aún más que el gusto, posee una cualidad afectiva agradable o desagradable, y por ello probablemente aún es más importante que este sentido en la selección de los alimentos. En efecto, una persona que haya consumido con anterioridad una comida que le sentara mal suele sentir náuseas ante su olor en una segunda ocasión. A la inversa, un perfume con las cualidades correctas puede ser un poderoso estimulante en las emociones humanas. Por ende, en algunos animales inferiores los olores cumplen la misión de excitantes primarios del impulso sexual.
Umbral para el olfato
Una de las principales características del olfato es la minúscula cantidad del agente estimulante presente en el aire que es capaz de suscitar una sensación olfatoria. Por ejemplo, la sustancia metilmercaptano puede olerse con la presencia solo de una 25 billonésima de gramo en cada mililitro de aire. Debido a este umbral tan bajo, dicha sustancia se mezcla con el gas natural para otorgarle un olor que pueda detectarse cuando se fugue una cantidad aún pequeña de una tubería.
Gradaciones de las intensidades del olor
Aunque las concentraciones umbrales de las sustancias que suscitan los olores son pequeñísimas, para muchos productos olorosos (si no para la mayoría), unos valores nada más que de 10 a 50 veces por encima del umbral provocan la máxima intensidad olfatoria. Este intervalo de discriminación de la intensidad choca con lo que sucede en la mayor parte de los demás sistemas sensitivos del cuerpo,
cuyos límites entre los que se distinguen las intensidades son inmensos: por ejemplo, de 500.000 a 1 en el caso de los ojos y de 1 billón a 1 en el del oído.
Vías olfatorias primitivas y nuevas hacia el sistema nervioso central
El tracto olfatorio penetra en el encéfalo a nivel de la unión anterior entre el mesencéfalo y el cerebro; allí, se divide en dos vías.
El sistema olfatorio antiguo: el área olfatoria lateral
El área olfatoria lateral está compuesta sobre todo por las cortezas prepiriforme y piriforme además de la porción cortical de los núcleos amigdalinos. Desde estas zonas, las vías activadoras se dirigen hacia casi todas las porciones del sistema límbico, en especial hacia las menos primitivas como el hipocampo, que parece más importante para aprender a disfrutar de ciertos alimentos o a aborrecerlos en función de las experiencias personales vividas con ellos. Por ejemplo, se cree que esta área olfatoria lateral y sus abundantes conexiones con el sistema límbico de orden conductual hacen que una persona desarrolle una absoluta aversión hacia las comidas que le hayan provocado náuseas y vómitos.
La vía moderna
Últimamente se ha descubierto una vía olfatoria más reciente que atraviesa el tálamo, pasando por su núcleo dorsomedial y llegando después al cuadrante lateroposterior de la corteza orbitofrontal. Según los estudios con monos, este sistema más moderno probablemente interviene en el análisis consciente de los olores.
Control centrífugo de la actividad en el bulbo olfatorio por parte del sistema nervioso central
Muchas fibras nerviosas que nacen en las porciones olfatorias del cerebro siguen un trayecto hacia el exterior por el tracto olfatorio hasta el bulbo olfatorio (es decir, «centrífugo» desde el cerebro hacia la periferia). Estas fibras nerviosas acaban en una gran cantidad de pequeños granos situados entre las células mitrales y en penacho en el bulbo olfatorio. Los granos envían señales inhibidoras hacia estos dos tipos de células. Se cree que esta retroalimentación negativa podría constituir un medio para acentuar la capacidad específica de distinguir un olor de otro.
